Cyclohexene synthesis by catalytic cracking of cyclohexylarenes.
نویسندگان
چکیده
منابع مشابه
suppression of coke formation in thermal cracking by coke inhibitors
the main purpose of this research was to:1.develop a coking model for thermal cracking of naphtha.2.study coke inhibition methods using different coke inhibitors.developing a coking model in naphtha cracking reactors requires a suitable model of the thermal cracking reactor based on a reliable kinetic model.to obtain reliable results all these models shall be solved simultaneously.for this pu...
15 صفحه اولcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولLow Temperature Catalytic Cracking of Heavy Feedstock Optimized by Response Surface Method
Upgrading of cracked PFO (Pyrolysis fuel oil) for production of fuels, such as gasoline and light gasoil, was carried out in a semi batch reactor. Two different kinds of mesoporous and microporous catalysts, MCM-41 and ZSM-5, were used. Modification methods, such as ion exchange and impregnation with Fe and Ti, were done for tuning the acidity of the catalyst. XRD, FT-IR, and XRF analyzes were ...
متن کاملAerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts
The aerobic oxidation of hydrocarbon is of great significance from the viewpoints of both fundamental and industry studies as it can transfer the petrochemical feedstock into valuable chemicals. In this work, we investigated the aerobic oxidation of cyclohexene over TiZrCo catalysts, in which 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion of 92.2%, which are co...
متن کاملSimulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery
Refineries produce about four percent of the global carbon dioxide emissions, close to one billion tons per year. Globally, the refining sector is the third largest producer of carbon dioxide after the electricity generation and cement industry.This greenhouse gases is a major cause of global warming and climate change and is a serious threat to human health and the environment. One way to redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Japan Petroleum Institute
سال: 1982
ISSN: 0582-4664
DOI: 10.1627/jpi1958.25.142